Components:
Method of action:
Treatment option:
Medically reviewed by Militian Inessa Mesropovna, PharmD. Last updated on 26.06.2023

Attention! Information on this page is intended only for medical professionals! Information is collected in open sources and may contain significant errors! Be careful and double-check all the information on this page!
Top 20 medicines with the same components:
Absorption
Celecoxib is well absorbed reaching peak plasma concentrations after approximately 2-3 hours. Dosing with food (high fat meal) delays absorption of celecoxib by about 1 hour resulting in a Tmax of about 4 hours and increases bioavailability by about 20%.
In healthy adult volunteers, the overall systemic exposure (AUC) of celecoxib was equivalent when celecoxib was administered as intact capsule or capsule contents sprinkled on applesauce. There were no significant alterations in Cmax, Tmax or T1/2 after administration of capsule contents on applesauce.
Distribution
Plasma protein binding is about 97 % at therapeutic plasma concentrations and the medicinal product is not preferentially bound to erythrocytes.
Biotransformation
Celecoxib metabolism is primarily mediated via cytochrome P450 2C9. Three metabolites, inactive as COX-1 or COX-2 inhibitors, have been identified in human plasma i.e., a primary alcohol, the corresponding carboxylic acid and its glucuronide conjugate.
Cytochrome P450 2C9 activity is reduced in individuals with genetic polymorphisms that lead to reduced enzyme activity, such as those homozygous for the CYP2C9*3 polymorphism.
In a pharmacokinetic study of celecoxib 200 mg administered once daily in healthy volunteers, genotyped as either CYP2C9*1/*1, CYP2C9*1/*3, or CYP2C9*3/*3, the median Cmax and AUC0-24 of celecoxib on day 7 were approximately 4-fold and 7-fold, respectively, in subjects genotyped as CYP2C9*3/*3 compared to other genotypes. In three separate single dose studies, involving a total of 5 subjects genotyped as CYP2C9*3/*3, single-dose AUC0-24 increased by approximately 3-fold compared to normal metabolisers. It is estimated that the frequency of the homozygous *3/*3 genotype is 0.3-1.0% among different ethnic groups.
Patients who are known, or suspected to be CYP2C9 poor metabolisers based on previous history/experience with other CYP2C9 substrates should be administered celecoxib with caution.
No clinically significant differences were found in PK parameters of celecoxib between elderly African-Americans and Caucasians.
The plasma concentration of celecoxib is approximately 100% increased in elderly women (>65 years).
Compared to subjects with normal hepatic function, patients with mild hepatic impairment had a mean increase in Cmax of 53% and in AUC of 26% of celecoxib. The corresponding values in patients with moderate hepatic impairment were 41% and 146% respectively. The metabolic capacity in patients with mild to moderate impairment was best correlated to their albumin values. Treatment should be initiated at half the recommended dose in patients with moderate liver impairment (with serum albumin 25-35 g/l). Patients with severe hepatic impairment (serum albumin <25 g/l) have not been studied and celecoxib is contraindicated in this patient group.
There is little experience of celecoxib in renal impairment. The pharmacokinetics of celecoxib has not been studied in patients with renal impairment but is unlikely to be markedly changed in these patients. Thus caution is advised when treating patients with renal impairment. Severe renal impairment is contraindicated.
Elimination
Celecoxib is mainly eliminated by metabolism. Less than 1 % of the dose is excreted unchanged in urine. The inter-subject variability in the exposure of celecoxib is about 10-fold. Celecoxib exhibits dose- and time-independent pharmacokinetics in the therapeutic dose range. Elimination half-life is 8-12 hours. Steady state plasma concentrations are reached within 5 days of treatment.
Absorption
Celebra is well absorbed reaching peak plasma concentrations after approximately 2-3 hours. Dosing with food (high fat meal) delays absorption by about 1 hour.
Distribution
The inter-subject variability in the exposure of Celebra is about 10-fold. Celebra exhibits dose- and time-independent pharmacokinetics in the therapeutic dose range. Plasma protein binding is about 97% at therapeutic plasma concentrations and the drug is not preferentially bound to erythrocytes. Elimination half-life is 8-12 hours. Steady state plasma concentrations are reached within 5 days of treatment. Pharmacological activity resides in the parent drug. The main metabolites found in the circulation have no detectable COX-1 or COX-2 activity.
Biotransformation
Celebra metabolism is primarily mediated via cytochrome P450 2C9. Three metabolites, inactive as COX-1 or COX-2 inhibitors, have been identified in human plasma i.e., a primary alcohol, the corresponding carboxylic acid and its glucuronide conjugate.
Cytochrome P450 2C9 activity is reduced in individuals with genetic polymorphisms that lead to reduced enzyme activity, such as those homozygous for the CYP2C9*3 polymorphism.
In a pharmacokinetic study of Celebra 200 mg administered once daily in healthy volunteers, genotyped as either CYP2C9*1/*1, CYP2C9*1/*3, or CYP2C9*3/*3, the median Cmax and AUC 0-24 of Celebra on day 7 were approximately 4-fold and 7- fold, respectively, in subjects genotyped as CYP2C9*3/*3 compared to other genotypes. In three separate single dose studies, involving a total of 5 subjects genotyped as CYP2C9*3/*3, single-dose AUC 0-24 increased by approximately 3- fold compared to normal metabolizers. It is estimated that the frequency of the homozygous *3/*3 genotype is 0.3-1.0% among different ethnic groups.
Patients who are known, or suspected to be CYP2C9 poor metabolizers based on previous history/experience with other CYP2C9 substrates should be administered Celebra with caution.
Elimination
Celebra is mainly eliminated by metabolism. Less than 1% of the dose is excreted unchanged in urine.
Renal impairment
There is little experience of Celebra in renal impairment. The pharmacokinetics of Celebra has not been studied in patients with renal impairment but is unlikely to be markedly changed in these patients. Thus caution is advised when treating patients with renal impairment. Severe renal impairment is contraindicated.
Hepatic impairment
Compared to subjects with normal hepatic function, patients with mild hepatic impairment had a mean increase in Cmax of 53% and in AUC of 26% of Celebra. The corresponding values in patients with moderate hepatic impairment were 41% and 146% respectively. The metabolic capacity in patients with mild to moderate impairment was best correlated to their albumin values. Treatment should be initiated at half the recommended dose in patients with moderate liver impairment (with serum albumin 25-35g/L). Patients with severe hepatic impairment (serum albumin <25 g/l) have not been studied and Celebra is contraindicated in this patient group.
Elderly
No clinically significant differences were found in PK parameters of Celebra between elderly African-Americans and Caucasians.
The plasma concentration of Celebra is approximately 100% increased in elderly women (>65 years).
Not applicable.
Any unused medicinal product or waste material should be disposed of in accordance with local requirements.
No special requirements for disposal.
Any unused medicinal product or waste material should be disposed of in accordance with local requirements.