Components:
Method of action:
Treatment option:
Medically reviewed by Fedorchenko Olga Valeryevna, PharmD. Last updated on 18.03.2022
Attention! Information on this page is intended only for medical professionals! Information is collected in open sources and may contain significant errors! Be careful and double-check all the information on this page!
Top 20 medicines with the same components:
Dosage Forms And Strengths
Each bottle of Zmax contains azithromycin dihydrate equivalent to 2 g of azithromycin. After constitution with 60 mL of water, each mL of suspension contains 27 mg of azithromycin. The suspension is a white or off-white color and has a cherry/banana flavor.
Storage And Handling
NDC 0069-4170-34 for combined adult and pediatric use is supplied in bottles containing 2 g of azithromycin and should be constituted with 60 mL of water.
Storage
Before constitution, store dry powder at or below 30°C (86°F).
After constitution, store suspension at 25°C (77°F); excursions permitted to 15-30°C (59-86°F). Do not refrigerate or freeze.
Constituted suspension should be consumed within 12 hr. For adult patients, the entire bottle should be consumed. For pediatric patients, any suspension remaining after dosing MUST be discarded.
Distributed by: Pfizer Labs, Division of Pfizer Inc., NY, NY 10017. Revised: Feb 2016
Acute Bacterial Sinusitis In Adults And Community-Acquired Pneumonia
Zmax (azithromycin) is a macrolide antibacterial drug indicated for the treatment with mild to moderate infections caused by susceptible strains of the designated microorganisms in the specific conditions listed below.
Acute bacterial sinusitis in adults due to Haemophilus influenzae, Moraxella catarrhalis or Streptococcus pneumoniae.
Community-acquired pneumonia in adults and pediatric patients six months of age or older due to Chlamydophila pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae or Streptococcus pneumoniae, in patients appropriate for oral therapy. Pediatric use in this indication is based on extrapolation of adult efficacy.
Limitations Of Use
Zmax is not recommended for use in patients with pneumonia who are judged to be inappropriate for oral therapy because of moderate to severe illness or risk factors such as any of the following:
- patients with cystic fibrosis,
- patients with nosocomial infections,
- patients with known or suspected bacteremia,
- patients requiring hospitalization,
- elderly or debilitated patients, or
- patients with significant underlying health problems that may compromise their ability to respond to their illness (including immunodeficiency or functional asplenia).
Usage
To reduce the development of drug-resistant bacteria and maintain the effectiveness of Zmax (azithromycin) and other antibacterial drugs, Zmax (azithromycin) should be used only to treat infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.
Adults
Zmax should be taken as a single 2 g dose. Zmax provides a full course of antibacterial therapy in a single oral dose. It is recommended that Zmax be taken on an empty stomach (at least 1 hr before or 2 hr following a meal).
Pediatric Patients
For pediatric patients 6 months and older, Zmax should be taken as a single dose of 60 mg/kg (equivalent to 27 mg/lb) body weight. The Zmax dose in mL is equivalent to the child's weight in lb (1 mL/lb dose, see Table 1 below), for a body weight of less than 75 lb (34 kg). It is recommended that Zmax be taken on an empty stomach (at least 1 hr before or 2 hrs following a meal).
Pediatric patients weighing 75 lb (34 kg) or more should receive the adult dose (2 g).
Table 1: Zmax Pediatric Dosage Guidelines: 1-dose
regimen
Dosing Calculated on 1 mL/lb, Dose 1 mL of Suspension for every 1 lb of Body Weight for Children < 75 lb (34 kg)a | |||
Weight | 1 mL/lb Dose | ||
Lb | Kg | Dose (mg) | Volume (mL) |
10 | 5 | 270 | 10 |
15 | 7 | 405 | 15 |
20 | 9 | 540 | 20 |
25 | 11 | 675 | 25 |
30 | 14 | 810 | 30 |
35 | 16 | 945 | 35 |
40 | 18 | 1080 | 40 |
45 | 20 | 1215 | 45 |
50 | 23 | 1350 | 50 |
55 | 25 | 1485 | 55 |
60 | 27 | 1620 | 60 |
65 | 30 | 1755 | 65 |
70 | 32 | 1890 | 70 |
> 75 | 34 | 2000 | Consume entire contents of bottle |
a To ensure accurate dosing, a dosing spoon, medicine syringe, or cup is recommended. |
Additional Treatment After Vomiting With Zmax
In the event that a patient vomits within 5 minutes of administration, the health care provider should consider additional antibiotic treatment since there would be minimal absorption of azithromycin. Since insufficient data exist on absorption of azithromycin if a patient vomits between 5 and 60 minutes following administration, alternative therapy should be considered. Neither a second dose of Zmax nor alternative treatment is warranted if vomiting occurs ≥ 60 minutes following administration, in patients with normal gastric emptying. In patients with delayed gastric emptying, alternative therapy should be considered.
Instructions For The Pharmacist
Constitute with 60 mL of water and replace cap. Shake bottle well before dispensing. Do not refrigerate. Constituted suspension should be consumed within 12 hr.
For pediatric dosing in patients weighing less than 75 lb (34 kg), use of a dosing device is recommended. The pharmacist should inform the patient's caregiver that any suspension remaining after dosing MUST be discarded.
Hypersensitivity Reactions
Zmax is contraindicated in patients with known hypersensitivity to azithromycin, erythromycin or any macrolide or ketolide drug.
Cholestatic Jaundice/Hepatic Dysfunction
Zmax is contraindicated in patients with a history of cholestatic jaundice/hepatic dysfunction associated with prior use of azithromycin.
WARNINGS
Included as part of the PRECAUTIONS section.
PRECAUTIONS
Allergic And Skin Reactions
Serious allergic reactions, including angioedema, anaphylaxis, Stevens Johnson syndrome, and toxic epidermal necrolysis have been reported in patients on azithromycin therapy using other formulations. Fatalities have been reported. Cases of Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) have also been reported. Despite initially successful symptomatic treatment of the allergic symptoms, when symptomatic therapy was discontinued, the allergic symptoms recurred soon thereafter in some patients without further azithromycin exposure. These patients required prolonged periods of observation and symptomatic treatment. The relationship of these episodes to the long tissue half-life of azithromycin and subsequent exposure to antigen has not been determined.
If an allergic reaction occurs, appropriate therapy should be instituted. Physicians should be aware that reappearance of the allergic symptoms may occur when symptomatic therapy is discontinued.
Hepatotoxicity
Abnormal liver function, hepatitis, cholestatic jaundice, hepatic necrosis, and hepatic failure have been reported, some of which have resulted in death. Discontinue azithromycin immediately if signs and symptoms of hepatitis occur.
QT Prolongation
Prolonged cardiac repolarization and QT interval, imparting a risk of developing cardiac arrhythmia and torsades de pointes, have been seen in treatment with macrolides, including azithromycin. Cases of torsades de pointes have been spontaneously reported during postmarketing surveillance in patients receiving azithromycin. Providers should consider the risk of QT prolongation which can be fatal when weighing the risks and benefits of azithromycin for at-risk groups including:
- patients with known prolongation of the QT interval, a history of torsades de pointes, congenital long QT syndrome, bradyarrhythmias or uncompensated heart failure
- patients on drugs known to prolong the QT interval
- patients with ongoing proarrhythmic conditions such as uncorrected hypokalemia or hypomagnesemia, clinically significant bradycardia, and in patients receiving Class IA (quinidine, procainamide) or Class III (dofetilide, amiodarone, sotalol) antiarrhythmic agents
Elderly patients may be more susceptible to drug-associated effects on the QT interval.
Clostridium difficile-Associated Diarrhea (CDAD)
Clostridium difficile-associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Zmax, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.
C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.
If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.
Exacerbation Of Myasthenia Gravis
Exacerbation of symptoms of myasthenia gravis and new onset of myasthenic syndrome have been reported in patients receiving azithromycin therapy.
Gastrointestinal Disturbances
A higher incidence of gastrointestinal adverse events (8 of 19 subjects) was observed when Zmax was administered to a limited number of subjects with GFR < 10 mL/min.
Development Of Drug Resistant Bacteria
Prescribing Zmax in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.
Patient Counseling Information
General Patient Counseling
- Patients should be instructed to take Zmax on an empty stomach (at least 1 hr before or 2 hr following a meal).
- To ensure accurate dosing for children, use of a dosing spoon, medicine syringe, or cup is recommended.
- Patients should be told that Zmax needs time to work, so the patient may not feel better right away. If the patient's symptoms do not improve in a few days, the patient or their guardian should call their doctor.
- Patients should be instructed to immediately contact a physician if any signs of an allergic reaction occur.
- Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.
- Patients who vomit within the first hr should contact their health care provider about further treatment.
- Keep bottle tightly closed. Store at room temperature. Use within 12 hr of constitution. Shake bottle well before use. Adult patients should consume the entire contents of the bottle; pediatric patients should take the recommended dose and MUST discard any unused portion.
- Patients should be advised that Zmax may be taken without regard to antacids containing magnesium hydroxide and/or aluminum hydroxide.
Patients should be counseled that antibacterial drugs including Zmax should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). Not taking the complete prescribed dose may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Zmax or other antibacterial drugs in the future.
See FDA-approved Patient Labeling
Nonclinical Toxicology
Carcinogenesis, Mutagenesis, Impairment Of Fertility
Long-term studies in animals have not been performed to evaluate carcinogenic potential. Azithromycin has shown no mutagenic potential in standard laboratory tests: mouse lymphoma assay, human lymphocyte clastogenic assay, and mouse bone marrow clastogenic assay. No evidence of impaired fertility due to azithromycin was found in rats given daily doses up to 10 mg/kg (approximately 0.05 times the single 2 g oral adult human dose based on body surface area).
Use In Specific Populations
Pregnancy
Teratogenic Effects
Pregnancy Category B: Reproduction studies have been performed in rats and mice at doses up to moderately maternally toxic dose concentrations (i.e., 200 mg/kg/day). These daily doses in rats and mice, based on body surface area, are estimated to be approximately equivalent to one or one-half of, respectively, the single adult oral dose of 2 g. In the animal studies, no evidence of harm to the fetus due to azithromycin was found. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, azithromycin should be used during pregnancy only if clearly needed.
Nursing Mothers
Azithromycin has been reported to be excreted in human breast milk in small amounts. Caution should be exercised when azithromycin is administered to a nursing woman.
Pediatric Use
Safety and effectiveness in the treatment of pediatric patients under 6 months of age have not been established.
Community-Acquired Pneumonia: The safety and effectiveness of Zmax have been established in pediatric patients 6 months of age or older with community-acquired pneumonia due to Chlamydophila pneumoniae, Mycoplasma pneumoniae, Haemophilus influenzae or Streptococcus pneumoniae. Use of Zmax for these patients is supported by evidence from adequate and well-controlled studies of Zmax in adults with additional safety and pharmacokinetic data in pediatric patients.
Acute bacterial sinusitis: Safety and effectiveness in the treatment of pediatric patients with acute bacterial sinusitis have not been established.
Geriatric Use
Data collected from the azithromycin capsule and tablet formulations indicate that a dosage adjustment does not appear to be necessary for older patients with normal renal function (for their age) and hepatic function receiving treatment with Zmax.
In clinical trials of Zmax, 17% of subjects were at least 65 years of age (214/1292) and 5% of subjects (59/1292) were at least 75 years of age. No overall differences in safety or effectiveness were observed between these subjects and younger subjects. Elderly patients may be more susceptible to development of torsades de pointes arrhythmia than younger patients.
Renal Impairment
No dosage adjustment is recommended for patients GFR > 10 mL/min. Caution should be exercised when Zmax is administered to patients with GFR < 10 mL/min, due to a higher incidence of gastrointestinal adverse events (8 of 19 subjects) observed in a limited number of subjects with GFR < 10 mL/min.
Gender
The impact of gender on the pharmacokinetics of azithromycin has not been evaluated for Zmax. However, previous studies have demonstrated no significant differences in the disposition of azithromycin between male and female subjects. No dosage adjustment of Zmax is recommended based on gender.
SIDE EFFECTS
Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Adults
The data described below reflect exposure to Zmax in 728 adult patients. All patients received a single 2 g oral dose of Zmax. The population studied had community-acquired pneumonia and acute bacterial sinusitis.
In controlled clinical trials with Zmax, the majority of the reported treatment-related adverse reactions were gastrointestinal in nature and mild to moderate in severity.
Overall, the most common treatment-related adverse reactions in adult patients receiving a single 2 g dose of Zmax were diarrhea/loose stools (12%), nausea (4%), abdominal pain (3%), headache (1%), and vomiting (1%). The incidence of treatment-related gastrointestinal adverse reactions was 17% for Zmax and 10% for pooled comparators.
Treatment-related adverse reactions following Zmax treatment that occurred with a frequency of < 1% included the following:
Cardiovascular: Palpitations, chest pain
Gastrointestinal: Constipation, dyspepsia, flatulence, gastritis, oral moniliasis
Genitourinary: Vaginitis
Nervous system: Dizziness, vertigo
General: Asthenia
Allergic: Rash, pruritus, urticaria
Special senses: Taste perversion
Pediatric Patients
The data described below reflect exposure to Zmax in 907 pediatric patients. The population was 3 months to 12 years of age. All patients received a single 60 mg/kg oral dose of Zmax.
As in adults, the most common treatment-related adverse reactions in pediatric subjects were gastrointestinal in nature. The pediatric subjects all received a single 60 mg/kg dose (equivalent to 27 mg/lb) of Zmax.
In a trial with 450 pediatric subjects (ages 3 months to 48 months), vomiting (11%), diarrhea (10%) loose stools (9%), and abdominal pain (2%) were the most frequently reported treatment-related gastrointestinal adverse reactions. Many treatment related gastrointestinal adverse reactions with an incidence greater than 1% began on the day of dosing in these subjects [43% (68/160)] and most [53% (84/160)] resolved within 48 hr of onset. Treatment-related adverse events that were not gastrointestinal, occurring with a frequency > 1% were: rash (5%), anorexia (2%), fever (2%), and dermatitis (2%).
In a second trial of 337 pediatric subjects, ages 2 years to 12 years, the most frequently reported treatment-related adverse reactions also included vomiting (14%), diarrhea (7%), loose stools (2%), nausea (4%) and abdominal pain (4%).
A third trial investigated the tolerability of two different concentrations of azithromycin oral suspension in 120 pediatric subjects (ages 3 months to 48 months), all of whom were treated with azithromycin. The study evaluated the hypothesis that a more dilute, less viscous formulation (the recommended 27 mg/mL concentration of Zmax) is less likely to induce vomiting in young children than a more concentrated suspension used in other pediatric studies. The vomiting rate for subjects taking the dilute concentration azithromycin was 3% (2/61). The rate was numerically lower but not statistically different from the vomiting for the more concentrated suspension Across both treatment arms, the only treatment-related adverse events with a frequency of > 1% were vomiting (6%, 7/120) and diarrhea (2%, 2/120).
Treatment-related adverse reactions with a frequency of < 1% following Zmax treatment in all 907 pediatric subjects in the Phase 3 studies were:
Body as a whole: Chills, fever, flu syndrome, headache;
Digestive: Abnormal stools, constipation, dyspepsia, flatulence, gastritis, gastrointestinal disorder, hepatitis;
Hematologic and lymphatic: Leukopenia;
Nervous system: Agitation, emotional liability, hostility, hyperkinesia, insomnia, irritability, paresthesia, Somnolence;
Respiratory: Asthma, bronchitis, cough, dyspnea, pharyngitis, rhinitis;
Skin and appendages: Dermatitis, fungal dermatitis, maculopapular rash, pruritus, urticaria;
Special senses: Otitis media, taste perversion;
Urogenital: Dysuria.
Postmarketing Experience With Other Azithromycin Products
Because these reactions are reported voluntarily from a population of uncertain size, reliably estimating their frequency or establishing a causal relationship to drug exposure is not always possible.
Adverse events reported with azithromycin immediate release formulations during the postmarketing period for which a causal relationship may not be established include:
Allergic: Arthralgia, edema, urticaria and angioedema
Cardiovascular: Palpitations and arrhythmias including ventricular tachycardia and hypotension
There have been reports of QT prolongation and torsades de pointes.
Gastrointestinal: Anorexia, constipation, dyspepsia, flatulence, vomiting/diarrhea, pseudomembranous colitis, pancreatitis, oral candidiasis, pyloric stenosis, and rare reports of tongue discoloration
General: Asthenia, paresthesia, fatigue, malaise and anaphylaxis
Genitourinary: Interstitial nephritis, acute renal failure and vaginitis
Hematopoietic: Thrombocytopenia, mild neutropenia
Liver/biliary: Adverse reactions related to hepatic dysfunction have been reported in postmarketing experience with azithromycin.
Nervous system: Convulsions, dizziness/vertigo, headache, somnolence, hyperactivity, nervousness, agitation and syncope
Psychiatric: Aggressive reaction and anxiety
Skin/appendages: Pruritus, rash, photosensitivity, serious skin reactions including erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, and DRESS.
Special senses: Hearing disturbances including hearing loss, deafness and/or tinnitus and reports of taste/smell perversion and/or loss
Laboratory Abnormalities
In subjects with normal baseline values, the following clinically significant laboratory abnormalities (irrespective of drug relationship) were reported in Zmax clinical trials in adults and pediatric patients:
Adults
Laboratory abnormalities with an incidence of greater than or equal to 1%: reduced lymphocytes and increased eosinophils; reduced bicarbonate. Laboratory abnormalities with an incidence of less than 1%: leukopenia, neutropenia, elevated bilirubin, AST, ALT, BUN, creatinine, alterations in potassium. Where follow-up was provided, changes in laboratory tests appeared to be reversible.
Pediatric Patients
Laboratory abnormalities with an incidence of greater than or equal to 1%: elevated eosinophils, BUN, and potassium; decreased lymphocytes; and alterations in neutrophils; with an incidence of less than 1%: elevated SGOT, SGPT and creatinine; decreased potassium; and alterations in sodium and glucose.
DRUG INTERACTIONS
Nelfinavir
Co-administration of nelfinavir at steady-state with a single oral dose of azithromycin resulted in increased azithromycin serum concentrations. Although a dose adjustment of azithromycin is not recommended when administered in combination with nelfinavir, close monitoring for known adverse reactions of azithromycin, such as liver enzyme abnormalities and hearing impairment, is warranted.
Warfarin
Spontaneous post-marketing reports suggest that concomitant administration of azithromycin may potentiate the effects of oral anticoagulants such as warfarin, although the prothrombin time was not affected in the dedicated drug interaction study with azithromycin and warfarin. Prothrombin times should be carefully monitored while patients are receiving azithromycin and oral anticoagulants concomitantly.
Potential Drug-Drug Interactions With Macrolides
Interactions with digoxin or phenytoin have not been reported in clinical trials with azithromycin; however, no specific drug interaction studies have been performed to evaluate potential drug-drug interactions. However, drug interactions have been observed with other macrolide products. Until further data are developed regarding drug interactions when digoxin or phenytoin are used concomitantly with azithromycin careful monitoring of patients is advised.
Teratogenic Effects
Pregnancy Category B: Reproduction studies have been performed in rats and mice at doses up to moderately maternally toxic dose concentrations (i.e., 200 mg/kg/day). These daily doses in rats and mice, based on body surface area, are estimated to be approximately equivalent to one or one-half of, respectively, the single adult oral dose of 2 g. In the animal studies, no evidence of harm to the fetus due to azithromycin was found. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, azithromycin should be used during pregnancy only if clearly needed.
Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Adults
The data described below reflect exposure to Zmax in 728 adult patients. All patients received a single 2 g oral dose of Zmax. The population studied had community-acquired pneumonia and acute bacterial sinusitis.
In controlled clinical trials with Zmax, the majority of the reported treatment-related adverse reactions were gastrointestinal in nature and mild to moderate in severity.
Overall, the most common treatment-related adverse reactions in adult patients receiving a single 2 g dose of Zmax were diarrhea/loose stools (12%), nausea (4%), abdominal pain (3%), headache (1%), and vomiting (1%). The incidence of treatment-related gastrointestinal adverse reactions was 17% for Zmax and 10% for pooled comparators.
Treatment-related adverse reactions following Zmax treatment that occurred with a frequency of < 1% included the following:
Cardiovascular: Palpitations, chest pain
Gastrointestinal: Constipation, dyspepsia, flatulence, gastritis, oral moniliasis
Genitourinary: Vaginitis
Nervous system: Dizziness, vertigo
General: Asthenia
Allergic: Rash, pruritus, urticaria
Special senses: Taste perversion
Pediatric Patients
The data described below reflect exposure to Zmax in 907 pediatric patients. The population was 3 months to 12 years of age. All patients received a single 60 mg/kg oral dose of Zmax.
As in adults, the most common treatment-related adverse reactions in pediatric subjects were gastrointestinal in nature. The pediatric subjects all received a single 60 mg/kg dose (equivalent to 27 mg/lb) of Zmax.
In a trial with 450 pediatric subjects (ages 3 months to 48 months), vomiting (11%), diarrhea (10%) loose stools (9%), and abdominal pain (2%) were the most frequently reported treatment-related gastrointestinal adverse reactions. Many treatment related gastrointestinal adverse reactions with an incidence greater than 1% began on the day of dosing in these subjects [43% (68/160)] and most [53% (84/160)] resolved within 48 hr of onset. Treatment-related adverse events that were not gastrointestinal, occurring with a frequency > 1% were: rash (5%), anorexia (2%), fever (2%), and dermatitis (2%).
In a second trial of 337 pediatric subjects, ages 2 years to 12 years, the most frequently reported treatment-related adverse reactions also included vomiting (14%), diarrhea (7%), loose stools (2%), nausea (4%) and abdominal pain (4%).
A third trial investigated the tolerability of two different concentrations of azithromycin oral suspension in 120 pediatric subjects (ages 3 months to 48 months), all of whom were treated with azithromycin. The study evaluated the hypothesis that a more dilute, less viscous formulation (the recommended 27 mg/mL concentration of Zmax) is less likely to induce vomiting in young children than a more concentrated suspension used in other pediatric studies. The vomiting rate for subjects taking the dilute concentration azithromycin was 3% (2/61). The rate was numerically lower but not statistically different from the vomiting for the more concentrated suspension Across both treatment arms, the only treatment-related adverse events with a frequency of > 1% were vomiting (6%, 7/120) and diarrhea (2%, 2/120).
Treatment-related adverse reactions with a frequency of < 1% following Zmax treatment in all 907 pediatric subjects in the Phase 3 studies were:
Body as a whole: Chills, fever, flu syndrome, headache;
Digestive: Abnormal stools, constipation, dyspepsia, flatulence, gastritis, gastrointestinal disorder, hepatitis;
Hematologic and lymphatic: Leukopenia;
Nervous system: Agitation, emotional liability, hostility, hyperkinesia, insomnia, irritability, paresthesia, Somnolence;
Respiratory: Asthma, bronchitis, cough, dyspnea, pharyngitis, rhinitis;
Skin and appendages: Dermatitis, fungal dermatitis, maculopapular rash, pruritus, urticaria;
Special senses: Otitis media, taste perversion;
Urogenital: Dysuria.
Postmarketing Experience With Other Azithromycin Products
Because these reactions are reported voluntarily from a population of uncertain size, reliably estimating their frequency or establishing a causal relationship to drug exposure is not always possible.
Adverse events reported with azithromycin immediate release formulations during the postmarketing period for which a causal relationship may not be established include:
Allergic: Arthralgia, edema, urticaria and angioedema
Cardiovascular: Palpitations and arrhythmias including ventricular tachycardia and hypotension
There have been reports of QT prolongation and torsades de pointes.
Gastrointestinal: Anorexia, constipation, dyspepsia, flatulence, vomiting/diarrhea, pseudomembranous colitis, pancreatitis, oral candidiasis, pyloric stenosis, and rare reports of tongue discoloration
General: Asthenia, paresthesia, fatigue, malaise and anaphylaxis
Genitourinary: Interstitial nephritis, acute renal failure and vaginitis
Hematopoietic: Thrombocytopenia, mild neutropenia
Liver/biliary: Adverse reactions related to hepatic dysfunction have been reported in postmarketing experience with azithromycin.
Nervous system: Convulsions, dizziness/vertigo, headache, somnolence, hyperactivity, nervousness, agitation and syncope
Psychiatric: Aggressive reaction and anxiety
Skin/appendages: Pruritus, rash, photosensitivity, serious skin reactions including erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, and DRESS.
Special senses: Hearing disturbances including hearing loss, deafness and/or tinnitus and reports of taste/smell perversion and/or loss
Laboratory Abnormalities
In subjects with normal baseline values, the following clinically significant laboratory abnormalities (irrespective of drug relationship) were reported in Zmax clinical trials in adults and pediatric patients:
Adults
Laboratory abnormalities with an incidence of greater than or equal to 1%: reduced lymphocytes and increased eosinophils; reduced bicarbonate. Laboratory abnormalities with an incidence of less than 1%: leukopenia, neutropenia, elevated bilirubin, AST, ALT, BUN, creatinine, alterations in potassium. Where follow-up was provided, changes in laboratory tests appeared to be reversible.
Pediatric Patients
Laboratory abnormalities with an incidence of greater than or equal to 1%: elevated eosinophils, BUN, and potassium; decreased lymphocytes; and alterations in neutrophils; with an incidence of less than 1%: elevated SGOT, SGPT and creatinine; decreased potassium; and alterations in sodium and glucose.
Adverse reactions experienced at higher than recommended doses were similar to those seen at normal doses. In the event of overdosage, general symptomatic and supportive measures are indicated as required.
Cardiac Electrophysiology
QTc interval prolongation was studied in a randomized, placebo-controlled parallel trial in 116 healthy subjects who received either chloroquine (1000 mg) alone or in combination with azithromycin (500 mg, 1000 mg, and 1500 mg once daily). Co-administration of azithromycin increased the QTc interval in a dose-and concentration-dependent manner. In comparison to chloroquine alone, the maximum mean (95% upper confidence bound) increases in QTcF were 5 (10) ms, 7 (12) ms and 9 (14) ms with the co-administration of 500 mg, 1000 mg and 1500 mg azithromycin, respectively.
Zmax is an extended-release microsphere formulation. Based on data obtained from studies evaluating the pharmacokinetics of azithromycin in healthy adult subjects a higher peak serum concentration (Cmax) and greater systemic exposure (AUC 0-24) of azithromycin are achieved on the day of dosing following a single 2 g dose of Zmax versus 1.5 g of azithromycin tablets administered over 3 days (500 mg/day) or 5 days (500 mg on day 1, 250 mg/day on days 2-5) [Table 2]. Consequently, due to these different pharmacokinetic profiles, Zmax is not interchangeable with azithromycin tablet 3-day and 5-day dosing regimens.
Table 2: Mean (SD) Pharmacokinetic Parameters for
Azithromycin on Day 1 Following the Administration of a Single Dose of 2 g Zmax
or 1.5 g of Azithromycin Tablets Given over 3 Days (500 mg/day) or 5 Days (500
mg on Day 1 and 250 mg on Days 2-5) to Healthy Adult Subjects
Pharmacokinetic Parameter | Azithromycin Regimen | ||
Zmax [N=4]† |
3-day ‡ [N=12] |
5-day‡ [N=12] |
|
Cmax (mcg/mL) | 0.821 (0.281) | 0.441 (0.223) | 0.434 (0.202) |
Tmax§ (hr) | 5.0 (2.0-8.0) | 2.5 (1.0-4.0) | 2.5 (1.0-6.0) |
AUC0-24 (mcg•hr/mL) | 8.62 (2.34) | 2.58 (0.84) | 2.60 (0.71) |
AUC0-∞ (mcg•hr/mL) | 20.0 (6.66) | 17.4 (6.2) | 14.9 (3.1) |
t½ (hr) | 58.8 (6.91) | 71.8 (14.7) | 68.9 (13.8) |
* Zmax, 3-day and 5-day regimen parameters obtained from
separate pharmacokinetic studies † N = 21 for AUC0-∞ and t½ ‡ Cmax, Tmax and AUC0-24 values for Day 1 only § Median (range) ¶Total AUC for the 1-day, 3-day and 5-day regimens SD = standard deviation Cmax = maximum serum concentration Tmax = time to Cmax AUC = area under concentration vs. time curve t½ = terminal serum half-life |
Absorption
The bioavailability of Zmax relative to azithromycin immediate release (IR) (powder for oral suspension) was 83%. On average, peak serum concentrations were achieved approximately 2.5 hr later following Zmax administration and were lower by 57%, compared to 2 g azithromycin IR. Thus, single 2 g doses of Zmax and azithromycin IR are not bioequivalent and are not interchangeable.
Effect of food on absorption: A high-fat meal increased the rate and extent of absorption of a 2 g dose of Zmax (115% increase in Cmax, and 23% increase in AUC0-72) compared to the fasted state. A standard meal also increased the rate of absorption (119% increase in Cmax) and with less effect on the extent of absorption (12% increase in AUC0-72) compared to administration of a 2 g Zmax dose in the fasted state.
Effect of antacids: Following the administration of Zmax with an aluminum and magnesium hydroxide antacid, the rate and extent of azithromycin absorption were not altered.
Distribution
The serum protein binding of azithromycin is concentration dependent, decreasing from 51% at 0.02 mcg/mL to 7% at 2 mcg/mL. Following oral administration, azithromycin is widely distributed throughout the body with an apparent steady-state volume of distribution of 31.1 L/kg.
Azithromycin concentrates in fibroblasts, epithelial cells, macrophages, and circulating neutrophils and monocytes. Higher azithromycin concentrations in tissues than in plasma or serum have been observed. White blood cell and lung exposure data in humans following a single 2 g dose of Zmax in adults are shown in Table 3. Following a 2 g single dose of Zmax, azithromycin achieved higher exposure (AUC0-120) in mononuclear leukocytes (MNL) and polymorphonuclear leukocytes (PMNL) than in serum. The azithromycin exposure (AUC0-72) in lung tissue and alveolar cells (AC) was approximately 100 times that in serum; and the exposure in epithelial lining fluid (ELF) was also higher (approximately 2-3 times) than in serum. The clinical significance of this distribution data is unknown.
Table 3: Azithromycin Exposure Data in White Blood
Cells and Lung Following a 2 g SingleDose of Zmax in Adults
A single 2 g dose of Zmax | ||||
WBC | Cmax (mcg/mL) | AUC0-24 (mcg•hr/mL) | AU C0-120 (mcg• hr/mL) | Ct=120† (mcg/mL) |
MNL‡ | 116 (40.2) | 1790 (540) | 4710 (1100) | 16.2 (5.51) |
PMNL‡ | 146 (66.0) | 2080 (650) | 10000 (2690) | 81.7 (23.3) |
LUNG | Cmax (mcg/mL) | AUC0-24 (mcg•hr/mL) | AUC0-72 (mcg•hr/mL) | |
ALVEOLAR CELL¶ | 669 | 7028 | 20403 | - |
ELF¶ | 3.2 | 17.6 | 131 | - |
Cmax (mcg/g) | AUC0-24 (mcg•hr/g) | AUC0-72 (mcg•hr/g) | ||
LUNG TISSUE¶ | 37.9 | 505 | 1693 | - |
Abbreviation: WBC: white blood cells; MNL: mononuclear
leukocytes; PMNL: polymorphonuclear leukocytes; ELF: Epithelial lining fluid † Azithromycin concentration at 120 hr after the start of dosing ‡ Data are presented as mean (standard deviation) ¶Cmax and AUC were calculated based on composite profile (n = 4 subjects/time point/formulation). |
Following a regimen of 500 mg of azithromycin tablets on the first day and 250 mg daily for 4 days, only very low concentrations were noted in cerebrospinal fluid (less than 0.01 mcg/mL) in the presence of non-inflamed meninges.
Metabolism
In vitro and in vivo studies to assess the metabolism of azithromycin have not been performed.
Excretion
Serum azithromycin concentrations following a single 2 g dose of Zmax declined in a polyphasic pattern with a terminal elimination half-life of 59 hr. The prolonged terminal half-life is thought to be due to a large apparent volume of distribution.
Biliary excretion of azithromycin, predominantly as unchanged drug, is a major route of elimination. Over the course of a week, approximately 6% of the administered dose appears as unchanged drug in urine.
However, we will provide data for each active ingredient