Components:
Method of action:
Treatment option:
Medically reviewed by Kovalenko Svetlana Olegovna, PharmD. Last updated on 30.03.2022
Attention! Information on this page is intended only for medical professionals! Information is collected in open sources and may contain significant errors! Be careful and double-check all the information on this page!
Top 20 medicines with the same components:
Dosage Forms And Strengths
AMARYL is formulated as tablets of:
- 1 mg (pink, flat-faced, oblong with notched sides at double bisect, imprinted with “AMA RYL” on one side)
- 2 mg (green, flat-faced, oblong with notched sides at double bisect, imprinted with “AMA RYL” on one side)
- 4 mg (blue, flat-faced, oblong with notched sides at double bisect, imprinted with “AMA RYL” on one side)
Storage And Handling
AMARYL tablets are available in the following strengths and package sizes:
1 mg (pink, flat-faced, oblong with notched sides at double bisect, imprinted with “AMA RYL” on one side) in bottles of 100 (NDC 0039-0221-10)
2 mg (green, flat-faced, oblong with notched sides at double bisect, imprinted with “AMA RYL” on one side) in bottles of 100 (NDC 0039-0222-10)
4 mg (blue, flat-faced, oblong with notched sides at double bisect, imprinted with “AMA RYL” on one side) in bottles of 100 (NDC 0039-0223-10)
Store at 25°C (77°F); excursions permitted to 20 - 25°C (68 - 77°F) (see USP Controlled Room Temperature).
Dispense in well-closed containers with safety closures.
sanofi-aventis U.S. LLC, Bridgewater, NJ 08807, A SANOFI COMPANY. Revised Dec 2016
AMARYL is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.
Important Limitations Of Use
AMARYL should not be used for the treatment of type 1 diabetes mellitus or diabetic ketoacidosis, as it would not be effective in these settings.
Recommended Dosing
AMARYL should be administered with breakfast or the first main meal of the day.
The recommended starting dose of AMARYL is 1 mg or 2 mg once daily. Patients at increased risk for hypoglycemia (e.g., the elderly or patients with renal impairment) should be started on 1 mg once daily.
After reaching a daily dose of 2 mg, further dose increases can be made in increments of 1 mg or 2 mg based upon the patient's glycemic response. Uptitration should not occur more frequently than every 1-2 weeks. A conservative titration scheme is recommended for patients at increased risk for hypoglycemia.
The maximum recommended dose is 8 mg once daily.
Patients being transferred to AMARYL from longer half-life sulfonylureas (e.g., chlorpropamide) may have overlapping drug effect for 1-2 weeks and should be appropriately monitored for hypoglycemia.
When colesevelam is coadministered with glimepiride, maximum plasma concentration and total exposure to glimepiride is reduced. Therefore, AMARYL should be administered at least 4 hours prior to colesevelam.
AMARYL is contraindicated in patients with a history of a hypersensitivity reaction to:
- Glimepiride or any of the product's ingredients.
Sulfonamide derivatives: Patients who have developed an allergic reaction to sulfonamide derivatives may develop an allergic reaction to AMARYL. Do not use AMARYL in patients who have a history of an allergic reaction to sulfonamide derivatives.
Reported hypersensitivity reactions include cutaneous eruptions with or without pruritus as well as more serious reactions (e.g. anaphylaxis, angioedema, Stevens-Johnson Syndrome, dyspnea).
WARNINGS
Included as part of the PRECAUTIONS section.
PRECAUTIONS
Hypoglycemia
All sulfonylureas, including AMARYL, can cause severe hypoglycemia. The patient's ability to concentrate and react may be impaired as a result of hypoglycemia. These impairments may present a risk in situations where these abilities are especially important, such as driving or operating other machinery. Severe hypoglycemia can lead to unconsciousness or convulsions and may result in temporary or permanent impairment of brain function or death.
Patients must be educated to recognize and manage hypoglycemia. Use caution when initiating and increasing AMARYL doses in patients who may be predisposed to hypoglycemia (e.g., the elderly, patients with renal impairment, patients on other anti-diabetic medications). Debilitated or malnourished patients, and those with adrenal, pituitary, or hepatic impairment are particularly susceptible to the hypoglycemic action of glucose-lowering medications. Hypoglycemia is also more likely to occur when caloric intake is deficient, after severe or prolonged exercise, or when alcohol is ingested.
Early warning symptoms of hypoglycemia may be different or less pronounced in patients with autonomic neuropathy, the elderly, and in patients who are taking beta-adrenergic blocking medications or other sympatholytic agents. These situations may result in severe hypoglycemia before the patient is aware of the hypoglycemia.
Hypersensitivity Reactions
There have been postmarketing reports of hypersensitivity reactions in patients treated with AMARYL, including serious reactions such as anaphylaxis, angioedema, and Stevens-Johnson Syndrome. If a hypersensitivity reaction is suspected, promptly discontinue AMARYL, assess for other potential causes for the reaction, and institute alternative treatment for diabetes.
Hemolytic Anemia
Sulfonylureas can cause hemolytic anemia in patients with glucose 6-phosphate dehydrogenase (G6PD) deficiency. Because AMARYL is a sulfonylurea, use caution in patients with G6PD deficiency and consider the use of a non-sulfonylurea alternative. There are also postmarketing reports of hemolytic anemia in patients receiving AMARYL who did not have known G6PD deficiency.
Increased Risk Of Cardiovascular Mortality With Sulfonylureas
The administration of oral hypoglycemic drugs has been reported to be associated with increased cardiovascular mortality as compared to treatment with diet alone or diet plus insulin. This warning is based on the study conducted by the University Group Diabetes Program (UGDP), a long-term, prospective clinical trial designed to evaluate the effectiveness of glucose-lowering drugs in preventing or delaying vascular complications in patients with non-insulin-dependent diabetes. The study involved 823 patients who were randomly assigned to one of four treatment groups UGDP reported that patients treated for 5 to 8 years with diet plus a fixed dose of tolbutamide (1.5 grams per day) had a rate of cardiovascular mortality approximately 2-½ times that of patients treated with diet alone. A significant increase in total mortality was not observed, but the use of tolbutamide was discontinued based on the increase in cardiovascular mortality, thus limiting the opportunity for the study to show an increase in overall mortality. Despite controversy regarding the interpretation of these results, the findings of the UGDP study provide an adequate basis for this warning. The patient should be informed of the potential risks and advantages of AMARYL and of alternative modes of therapy. Although only one drug in the sulfonylurea class (tolbutamide) was included in this study, it is prudent from a safety standpoint to consider that this warning may also apply to other oral hypoglycemic drugs in this class, in view of their close similarities in mode of action and chemical structure.
Macrovascular Outcomes
There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with AMARYL or any other anti-diabetic drug.
Nonclinical Toxicology
Carcinogenesis, Mutagenesis, And Impairment Of Fertility
Studies in rats at doses of up to 5000 parts per million (ppm) in complete feed (approximately 340 times the maximum recommended human dose, based on surface area) for 30 months showed no evidence of carcinogenesis. In mice, administration of glimepiride for 24 months resulted in an increase in benign pancreatic adenoma formation that was dose-related and was thought to be the result of chronic pancreatic stimulation. No adenoma formation in mice was observed at a dose of 320 ppm in complete feed, or 46-54 mg/kg body weight/day. This is about 35 times the maximum human recommended dose of 8 mg once daily based on surface area.
Glimepiride was non-mutagenic in a battery of in vitro and in vivo mutagenicity studies (Ames test, somatic cell mutation, chromosomal aberration, unscheduled DNA synthesis, and mouse micronucleus test).
There was no effect of glimepiride on male mouse fertility in animals exposed up to 2500 mg/kg body weight ( > 1,700 times the maximum recommended human dose based on surface area). Glimepiride had no effect on the fertility of male and female rats administered up to 4000 mg/kg body weight (approximately 4,000 times the maximum recommended human dose based on surface area).
Use In Specific Populations
Pregnancy
Pregnancy Category C
There are no adequate and well-controlled studies of AMARYL in pregnant women. In animal studies there was no increase in congenital anomalies, but an increase in fetal deaths occurred in rats and rabbits at glimepiride doses 50 times (rats) and 0.1 times (rabbits) the maximum recommended human dose (based on body surface area). This fetotoxicity, observed only at doses inducing maternal hypoglycemia, is believed to be directly related to the pharmacologic (hypoglycemic) action of glimepiride and has been similarly noted with other sulfonylureas. AMARYL should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Because data suggest that abnormal blood glucose during pregnancy is associated with a higher incidence of congenital abnormalities, diabetes treatment during pregnancy should maintain blood glucose as close to normal as possible.
Nonteratogenic Effects
Prolonged severe hypoglycemia (4 to 10 days) has been reported in neonates born to mothers receiving a sulfonylurea at the time of delivery.
Nursing Mothers
It is not known whether AMARYL is excreted in human milk. During pre- and post-natal studies in rats, significant concentrations of glimepiride were present in breast milk and the serum of the pups. Offspring of rats exposed to high levels of glimepiride during pregnancy and lactation developed skeletal deformities consisting of shortening, thickening, and bending of the humerus during the postnatal period. These skeletal deformations were determined to be the result of nursing from mothers exposed to glimepiride. Based on these animal data and the potential for hypoglycemia in a nursing infant, a decision should be made whether to discontinue nursing or discontinue AMARYL, taking into account the importance of AMARYL to the mother.
Pediatric Use
The pharmacokinetics, efficacy and safety of AMARYL have been evaluated in pediatric patients with type 2 diabetes as described below. AMARYL is not recommended in pediatric patients because of its adverse effects on body weight and hypoglycemia.
The pharmacokinetics of a 1 mg single dose of AMARYL was evaluated in 30 patients with type 2 diabetes (male = 7; female = 23) between ages 10 and 17 years. The mean (± SD) AUC (339±203 ng·hr/mL), Cmax (102±48 ng/mL) and t½ (3.1±1.7 hours) for glimepiride were comparable to historical data from adults (AUC(0-last) 315±96 ng·hr/mL, Cmax 103±34 ng/mL and t½ 5.3±4.1 hours).
The safety and efficacy of AMARYL in pediatric patients was evaluated in a single-blind, 24-week trial that randomized 272 patients (8-17 years of age) with type 2 diabetes to AMARYL (n=135) or metformin (n=137). Both treatment-naive patients (those treated with only diet and exercise for at least 2 weeks prior to randomization) and previously treated patients (those previously treated or currently treated with other oral antidiabetic medications for at least 3 months) were eligible to participate. Patients who were receiving oral antidiabetic agents at the time of study entry discontinued these medications before randomization without a washout period. AMARYL was initiated at 1 mg, and then titrated up to 2, 4 or 8 mg (mean last dose 4 mg) through Week 12, targeting a self-monitored fasting fingerstick blood glucose < 126 mg/dL. Metformin was initiated at 500 mg twice daily and titrated at Week 12 up to 1000 mg twice daily (mean last dose 1365 mg).
After 24 weeks, the overall mean treatment difference in HbA1c between AMARYL and metformin was 0.2%, favoring metformin (95% confidence interval -0.3% to +0.6%). Based on these results, the trial did not meet its primary objective of showing a similar reduction in HbA1c with AMARYL compared to metformin.
Table 2: Change from Baseline in HbA and Body Weight
in Pediatric Patients Taking Amaryl or Metformin
Metformin | AMARYL | |
Treatment-Naive Patients* | N=69 | N=72 |
HbA1C (%) | ||
Baseline (mean) | 8.2 | 8.3 |
Change from baseline (adjusted LS mean)† | -1.2 | -1.0 |
Adjusted Treatment Difference‡(95%CI) | 0.2 (-0.3; 0.6) | |
Previously Treated Patients* | N=57 | N=55 |
HbA1C (%) | ||
Baseline (mean) | 9.0 | 8.7 |
Change from baseline (adjusted LS mean)† | -0.2 | 0.2 |
Adjusted Treatment Difference‡ (95%CI) | 0.4 (-0.4; 1.2) | |
Body Weight (kg)* | N=126 | N=129 |
Baseline (mean) | 67.3 | 66.5 |
Change from baseline (adjusted LS mean)† | 0.7 | 2.0 |
Adjusted Treatment Difference‡ (95% CI) | 1.3 (0.3; 2.3) | |
*Intent-to-treat population using
last-observation-carried-forward for missing data (AMARYL, n=127; metformin,
n=126) †adjusted for baseline HbA 1c and Tanner Stage ‡Difference is AMARYL - metformin with positive differences favoring metformin |
The profile of adverse reactions in pediatric patients treated with AMARYL was similar to that observed in adults.
Hypoglycemic events documented by blood glucose values < 36 mg/dL were observed in 4% of pediatric patients treated with AMARYL and in 1% of pediatric patients treated with metformin. One patient in each treatment group experienced a severe hypoglycemic episode (severity was determined by the investigator based on observed signs and symptoms).
Geriatric Use
In clinical trials of AMARYL, 1053 of 3491 patients (30%) were > 65 years of age. No overall differences in safety or effectiveness were observed between these patients and younger patients, but greater sensitivity of some older individuals cannot be ruled out.
There were no significant differences in glimepiride pharmacokinetics between patients with type 2 diabetes ≤ 65 years (n=49) and those > 65 years (n=42).
Glimepiride is substantially excreted by the kidney. Elderly patients are more likely to have renal impairment. In addition, hypoglycemia may be difficult to recognize in the elderly. Use caution when initiating AMARYL and increasing the dose of AMARYL in this patient population.
Renal Impairment
To minimize the risk of hypoglycemia, the recommended starting dose of AMARYL is 1 mg daily for all patients with type 2 diabetes and renal impairment.
A multiple-dose titration study was conducted in 16 patients with type 2 diabetes and renal impairment using doses ranging from 1 mg to 8 mg daily for 3 months. Baseline creatinine clearance ranged from 10-60 mL/min. The pharmacokinetics of AMARYL were evaluated in the multiple-dose titration study and the results were consistent with those observed in patients enrolled in a single-dose study. In both studies, the relative total clearance of AMARYL increased when kidney function was impaired. Both studies also demonstrated that the elimination of the two major metabolites was reduced in patients with renal impairment.
Aspirin: In a randomized, double-blind, two-period, crossover study, healthy subjects were given either placebo or aspirin 1 gram three times daily for a total treatment period of 5 days. On Day 4 of each study period, a single 1 mg dose of AMARYL was administered. The AMARYL doses were separated by a 14-day washout period. Co-administration of aspirin and AMARYL resulted in a 34% decrease in the mean glimepiride AUC and a 4% decrease in the mean glimepiride Cmax.
Colesevelam: Concomitant administration of colesevelam and glimepiride resulted in reductions in glimepiride AUC0-∞ and Cmax of 18% and 8%, respectively. When glimepiride was administered 4 hours prior to colesevelam, there was no significant change in glimepiride AUC0-∞ and Cmax, -6% and 3%, respectively.
Cimetidine and Ranitidine: In a randomized, open-label, 3-way crossover study, healthy subjects received either a single 4 mg dose of AMARYL alone, AMARYL with ranitidine (150 mg twice daily for 4 days; AMARYL was administered on Day 3), or AMARYL with cimetidine (800 mg daily for 4 days; AMARYL was administered on Day 3). Co-administration of cimetidine or ranitidine with a single 4 mg oral dose of AMARYL did not significantly alter the absorption and disposition of glimepiride.
Propranolol: In a randomized, double-blind, two-period, crossover study, healthy subjects were given either placebo or propranolol 40 mg three times daily for a total treatment period of 5 days. On Day 4 or each study period, a single 2 mg dose of AMARYL was administered. The AMARYL doses were separated by a 14-day washout period. Concomitant administration of propranolol and AMARYL significantly increased glimepiride Cmax, AUC, and T½ by 23%, 22%, and 15%, respectively, and decreased glimepiride CL/f by 18%. The recovery of M1 and M2 from urine was not changed.
Warfarin: In an open-label, two-way, crossover study, healthy subjects received 4 mg of AMARYL daily for 10 days. Single 25 mg doses of warfarin were administered 6 days before starting AMARYL and on Day 4 of AMARYL administration. The concomitant administration of AMARYL did not alter the pharmacokinetics of R- and S-warfarin enantiomers. No changes were observed in warfarin plasma protein binding. AMARYL resulted in a statistically significant decrease in the pharmacodynamic response to warfarin. The reductions in mean area under the prothrombin time (PT) curve and maximum PT values during AMARYL treatment were 3.3% and 9.9%, respectively, and are unlikely to be clinically relevant.
Pregnancy Category C
There are no adequate and well-controlled studies of AMARYL in pregnant women. In animal studies there was no increase in congenital anomalies, but an increase in fetal deaths occurred in rats and rabbits at glimepiride doses 50 times (rats) and 0.1 times (rabbits) the maximum recommended human dose (based on body surface area). This fetotoxicity, observed only at doses inducing maternal hypoglycemia, is believed to be directly related to the pharmacologic (hypoglycemic) action of glimepiride and has been similarly noted with other sulfonylureas. AMARYL should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Because data suggest that abnormal blood glucose during pregnancy is associated with a higher incidence of congenital abnormalities, diabetes treatment during pregnancy should maintain blood glucose as close to normal as possible.
Nonteratogenic Effects
Prolonged severe hypoglycemia (4 to 10 days) has been reported in neonates born to mothers receiving a sulfonylurea at the time of delivery.
The following serious adverse reactions are discussed in more detail below and elsewhere in the labeling:
- Hypoglycemia
- Hemolytic anemia
In clinical trials, the most common adverse reactions with AMARYL were hypoglycemia, dizziness, asthenia, headache, and nausea.
Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Approximately 2,800 patients with type 2 diabetes have been treated with AMARYL in the controlled clinical trials. In these trials, approximately 1,700 patients were treated with AMARYL for at least 1 year.
Table 1 summarizes adverse events, other than hypoglycemia, that were reported in 11 pooled placebocontrolled trials, whether or not considered to be possibly or probably related to study medication. Treatment duration ranged from 13 weeks to 12 months. Terms that are reported represent those that occurred at an incidence of ≥ 5% among AMARYL-treated patients and more commonly than in patients who received placebo.
Table 1: Eleven Pooled Placebo-Controlled Trials
ranging from 13 weeks to 12 months : Adverse Events (Excluding Hypoglycemia) Occurring
in ≥ 5% of AMARYL-treated Patients and at a Greater Incidence than with
Placebo*
AMARYL N=745 % |
Placebo N=294 % |
|
Headache | 8.2 | 7.8 |
Accidental Injury† | 5.8 | 3.4 |
Flu Syndrome | 5.4 | 4.4 |
Nausea | 5.0 | 3.4 |
Dizziness | 5.0 | 2.4 |
*AMARYL doses ranged from 1-16 mg administered daily †Insufficient information to determine whether any of the accidental injury events were associated with hypoglycemia |
Hypoglycemia
In a randomized, double-blind, placebo-controlled monotherapy trial of 14 weeks duration, patients already on sulfonylurea therapy underwent a 3-week washout period then were randomized to AMARYL 1 mg, 4 mg, 8 mg or placebo. Patients randomized to AMARYL 4 mg or 8 mg underwent forced-titration from an initial dose of 1 mg to these final doses, as tolerated. The overall incidence of possible hypoglycemia (defined by the presence of at least one symptom that the investigator believed might be related to hypoglycemia; a concurrent glucose measurement was not required) was 4% for AMARYL 1 mg, 17% for AMARYL 4 mg, 16% for AMARYL 8 mg and 0% for placebo. All of these events were self-treated.
In a randomized, double-blind, placebo-controlled monotherapy trial of 22 weeks duration, patients received a starting dose of either 1 mg AMARYL or placebo daily. The dose of AMARYL was titrated to a target fasting plasma glucose of 90-150 mg/dL. Final daily doses of AMARYL were 1, 2, 3, 4, 6 or 8 mg. The overall incidence of possible hypoglycemia (as defined above for the 14-week trial) for AMARYL vs. placebo was 19.7% vs. 3.2%. All of these events were selftreated.
Weight gain: AMARYL, like all sulfonylureas, can cause weight gain.
Allergic Reactions: In clinical trials, allergic reactions, such as pruritus, erythema, urticaria, and morbilliform or maculopapular eruptions, occurred in less than 1% of AMARYL-treated patients. These may resolve despite continued treatment with AMARYL. There are postmarketing reports of more serious allergic reactions (e.g., dyspnea, hypotension, shock) .
Laboratory Tests
Elevated Serum Alanine Aminotransferase (ALT): In 11 pooled placebo-controlled trials of AMARYL, 1.9% of AMARYL-treated patients and 0.8% of placebo-treated patients developed serum ALT greater than 2 times the upper limit of the reference range.
Postmarketing Experience
The following adverse reactions have been identified during post-approval use of AMARYL. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
- Serious hypersensitivity reactions, including anaphylaxis, angioedema, and Stevens-Johnson Syndrome
- Hemolytic anemia in patients with and without G6PD deficiency
- Impairment of liver function (e.g. with cholestasis and jaundice), as well as hepatitis, which may progress to liver failure.
- Porphyria cutanea tarda, photosensitivity reactions and allergic vasculitis
- Leukopenia, agranulocytosis, aplastic anemia, and pancytopenia
- Thrombocytopenia (including severe cases with platelet count less than 10,000/μL) and thrombocytopenic purpura
- Hepatic porphyria reactions and disulfiram-like reactions
- Hyponatremia and syndrome of inappropriate antidiuretic hormone secretion (SIADH), most often in patients who are on other medications or who have medical conditions known to cause hyponatremia or increase release of antidiuretic hormone
- Dysgeusia
- Alopecia
An overdosage of AMARYL, as with other sulfonylureas, can produce severe hypoglycemia. Mild episodes of hypoglycemia can be treated with oral glucose. Severe hypoglycemic reactions constitute medical emergencies requiring immediate treatment. Severe hypoglycemia with coma, seizure, or neurological impairment can be treated with glucagon or intravenous glucose. Continued observation and additional carbohydrate intake may be necessary because hypoglycemia may recur after apparent clinical recovery.
In healthy subjects, the time to reach maximal effect (minimum blood glucose concentrations) was approximately 2-3 hours after single oral doses of AMARYL. The effects of AMARYL on HbA1c, fasting plasma glucose, and post-prandial glucose have been assessed in clinical trials.
Absorption
Studies with single oral doses of glimepiride in healthy subjects and with multiple oral doses in patients with type 2 diabetes showed peak drug concentrations (Cmax) 2 to 3 hours post-dose. When glimepiride was given with meals, the mean Cmax and AUC (area under the curve) were decreased by 8% and 9%, respectively.
Glimepiride does not accumulate in serum following multiple dosing. The pharmacokinetics of glimepiride does not differ between healthy subjects and patients with type 2 diabetes. Clearance of glimepiride after oral administration does not change over the 1 mg to 8 mg dose range, indicating linear pharmacokinetics.
In healthy subjects, the intra- and inter-individual variabilities of glimepiride pharmacokinetic parameters were 15-23% and 24-29%, respectively.
Distribution
After intravenous dosing in healthy subjects, the volume of distribution (Vd) was 8.8 L (113 mL/kg), and the total body clearance (CL) was 47.8 mL/min. Protein binding was greater than 99.5%.
Metabolism
Glimepiride is completely metabolized by oxidative biotransformation after either an intravenous or oral dose. The major metabolites are the cyclohexyl hydroxy methyl derivative (M1) and the carboxyl derivative (M2). Cytochrome P450 2C9 is involved in the biotransformation of glimepiride to M1. M1 is further metabolized to M2 by one or several cytosolic enzymes. M2 is inactive. In animals, M1 possesses about one-third of the pharmacological activity of glimepiride, but it is unclear whether M1 results in clinically meaningful effects on blood glucose in humans.
Excretion
When 14C-glimepiride was given orally to 3 healthy male subjects, approximately 60% of the total radioactivity was recovered in the urine in 7 days. M1 and M2 accounted for 80-90% of the radioactivity recovered in the urine. The ratio of M1 to M2 in the urine was approximately 3:2 in two subjects and 4:1 in one subject. Approximately 40% of the total radioactivity was recovered in feces. M1 and M2 accounted for about 70% (ratio of M1 to M2 was 1:3) of the radioactivity recovered in feces. No parent drug was recovered from urine or feces. After intravenous dosing in patients, no significant biliary excretion of glimepiride or its M1 metabolite was observed.
Geriatric Patients
A comparison of glimepiride pharmacokinetics in patients with type 2 diabetes ≤ 65 years and those > 65 years was evaluated in a multiple-dose study using AMARYL 6 mg daily. There were no significant differences in glimepiride pharmacokinetics between the two age groups. The mean AUC at steady state for the older patients was approximately 13% lower than that for the younger patients; the mean weight-adjusted clearance for the older patients was approximately 11% higher than that for the younger patients.
Gender
There were no differences between males and females in the pharmacokinetics of glimepiride when adjustment was made for differences in body weight.
Race
No studies have been conducted to assess the effects of race on glimepiride pharmacokinetics but in placebo-controlled trials of AMARYL in patients with type 2 diabetes, the reduction in HbA was comparable in Caucasians (n = 536), blacks (n = 63), and Hispanics (n = 63).
Renal Impairment
A single-dose, open-label study AMARYL 3 mg was administered to patients with mild, moderate and severe renal impairment as estimated by creatinine clearance (CLcr): Group I consisted of 5 patients with mild renal impairment (CLcr > 50 mL/min), Group II consisted of 3 patients with moderate renal impairment (CLcr = 20-50 mL/min) and Group III consisted of 7 patients with severe renal impairment (CLcr < 20 mL/min). Although, glimepiride serum concentrations decreased with decreasing renal function, Group III had a 2.3-fold higher mean AUC for M1 and an 8.6-fold higher mean AUC for M2 compared to corresponding mean AUCs in Group I. The apparent terminal half-life (T½) for glimepiride did not change, while the half-lives for M1 and M2 increased as renal function decreased. Mean urinary excretion of M1 plus M2 as a percentage of dose decreased from 44.4% for Group I to 21.9% for Group II and 9.3% for Group III.
Hepatic Impairment
It is unknown whether there is an effect of hepatic impairment on AMARYL pharmacokinetics because the pharmacokinetics of AMARYL has not been adequately evaluated in patients with hepatic impairment.
Obese Patients
The pharmacokinetics of glimepiride and its metabolites were measured in a singledose study involving 28 patients with type 2 diabetes who either had normal body weight or were morbidly obese. While the tmax, clearance, and volume of distribution of glimepiride in the morbidly obese patients were similar to those in the normal weight group, the morbidly obese had lower Cmax and AUC than those of normal body weight. The mean Cmax, AUC0-24, AUC0-∞ values of glimepiride in normal vs. morbidly obese patients were 547 ± 218 ng/mL vs. 410 ± 124 ng/mL, 3210 ± 1030 hours·ng/mL vs. 2820 ± 1110 hours·ng/mL and 4000 ± 1320 hours·ng/mL vs. 3280 ± 1360 hours·ng/mL, respectively.